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The Round Functions of SERPENT Generate the Alternating
Group

Ralph Wernsdorf
SIT GmbH, 12557 Berlin, Germany*

1 Introduction

The SERPENT algorithm is a block cipher with a block length of 128 bit that has been
submitted for the AES selection process. It was developed by R. Anderson, E. Biham and L.
Knudsen [1].

In the following a proof is given that the one round functions of SERPENT generate the
Alternating Group over the set {0,1}'?® of all 128-bit-vectors.

This result implies that from the algebraic point of view some thinkable weaknesses of
SERPENT can be excluded (if the generated group were smaller then this would point to
regularities in the algorithm, see for example[4], [5], [8]).

An analogous property is known for the block ciphers DES [6], IDEA(32) [4] and SAFER [2].

2 Definitions and Notations

The notation of the SERPENT round function components will be taken from the SERPENT
definition given in [1] (note that the presentation given on the pages 3 - 4 in [1] is used here
and not the bitslice presentation on the pages 5 - 6 in [1]. For convenience the little "roofs’ on
the symbols are omitted here.).

The round functions R, are defined by:
"i1{04,...,30}" X1 {04 : R (X) = L(S (X A K)),

where ”A” denotes the bitwise X OR-operation,
K1 {01}'?® denotes the corresponding round subkey,

S :{0,1}128 ® {0,1}128 denotes the application of the S-box S (i mod 8) 32 times in
paralel and

L :{01'*® ® {01}'*® denotes the linear transformation according to the binary matrix
on the pages 19-20in[1].

The S-Boxes {0}* ® {01}* are denoted by S0, S1, ..., S7.
The permutation group G considered here is defined by:

G:= <{R, {o}'® ® {0,1}128| i1 {o4,...,7},K1 {0,1}128}>,

where” <M > " denotes the closure of a permutation set M with respect to concatenation.

Properties of the round subkeys caused by the key scheduling will be neglected here.
Therefore the generating set of G contains 81?8 permutations.

! WendenschloRstraRe 168, Haus 28, Email: Ralph.Wernsdorf@sit.rohde-schwarz.com
© Rohde&Schwarz SIT GmbH 2000




_2.

3 Some Elementary Properties of the Generated Group
Lemma 1: The group G istransitive on the set {0,1}*%%.

Proof: By concatenations R’ 1o R¢with suited round subkeys K, K” each given element of
the set {0,1}128 can obviously be transformed to each other arbitrarily given element of the set

{0’1}128 .

Lemma 2: The group G contains only even permutations.

Proof: The mappings X ® K A X are even permutations, because for K = (0,0.,...,0) we
obtain the identity permutation and for Kt (0,0,...,0) the cycle representation consists of

2'?" cycles of length 2.

The linear transformation L is an even permutation, because binary one-to-one linear

transformations over {0,],}n ,n3 3, are aways even permutations (see for example [3]; besides

this, the author found by computations, that all cycles in the cycle representation of L have
odd length.)

The permutations S are even, because they can be represented as concatenations of parallel

applications (32 times) of 2-cycles over {0,1}4 (14 fixed points and one cycle of length 2).

Such a parallel application of 2-cycles yields a permutation with 14* fixed points and

2128 _ 1432
2

the parallel application of 2-cyclesis an even permutation.

Now the proof is complete, since the concatenation of even permutations aways yields an
even permutation.

= 2127 . 231732 cycles of length 2. The number 227 - 231 x7%? is even, hence

Lemma 3: For al permutations on {0,1}4 the parallel application (32 times) is an element
of G.

Proof (sketch): We choose round functions with the all zero subkey and consider products of
the form R'1o R It is not difficult to check that for example R{*o R,y and R3'o R, can

generate all permutations of the required form. (The permutations S1° 1550 and S371o 50

generate the symmetric group on {0,1}%.)
|

Corallary 4: Thelinear transformation L is an element of G.

Proof: We choose an arbitrary round function R; with the al zero subkey: R (X) = L(S (X)).

From Lemma 3 we know that S is an element of G. Thisimmediately implies LT G.
|
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Lemma 5: For al even permutations P:{0}* ® {0}* andforall jT {01...,31} we have:
The mapping M :{01}'® ® {01}'*® defined by:

" X1 {0,1}128 1Y =M (X)with : (aj Yajua Yooz Yajua) = P(Xaj Xajur, Xajuz Xajua)

1 YI = Xi dse

isan element of G.

Proof (sketch): We choose round functions with the all zero subkey (with the exception of
the components Ky;, K4j41,Kaj+2,Kaj+3) and consider products of the form R1oRe Itis

not difficult to check that these products can generate all permutations of the required form.
|

Corallary 6: For all 32-tuples of even permutations Pj :{0,]}4 ® {0,1}4, j=01,...,31, the
mapping M ¢:{01}*% ® {0,1}'*® defined by:

*XT {02128 +y := M §X) with : (Ya; ,Y4j+1,Y4j+2,Y4j+3_) =P (X4j, X4j41: Xaj+2, X4j43),
0 j=01...31

isan element of G.

Proof: Each mapping M" of the described form can be represented as a product of
mappings M of the form described in Lemma.
|

4 Proof that the Round Functions Generatethe Alternating Group
Lemma 7: The group G is doubly transitive on the set {0,1}'%.

Proof: Because the group G is transitive on the set {0,1}128, it suffices to show that the
subgroup Gp of G containing all elements of G which let the all zero vector fixed, is transitive

on {0}*%\{(0,0,...,0)} (see[7], p. 19).

Let us start with an arbitrary non-zero vector X 1 {0,1}128. With the help of Corollary 6 it can
be shown that it is aways possible to find an element of the subgroup Gy that transforms X to

avector X ¢t (0,0,...,0) with:

"1 {01,... 35 (X8, X§isa. X$i12. X§i3) 1 {(00,00), (1111}

(Choose even permutations P; that (*) let (0,0,0,0) fixed and that transform the non-all-zero-
components (X4, X4j+1, X4j+2, X4j+3) t0(1,1,1,1).)

By computations on a PC it has been verified that it is always possible to transform the
mentioned X to the all-one-vector by repeated concatenations of L and permutations of the
form (*) above. (There are only 2*>—1 such vectors X'.)

Because we have L1 G, it followsthat Gy is transitive on the set {01}*221{(0,0,...,0)} .
Hence, G is doubly transitive on the set {0,1}'?%.
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Theorem: The group G equals the Alternating group over the set {0,1}128.

Proof: For the proof we apply a part of Theorem 15.1in[7], p. 42
" Let G be a k-ply transitive group, neither alternating nor symmetric. Let n be its degree, m

itsminimal degree. If k3 2, then m3 g %
Here the minimal degree is the smallest degree of the non-identity-permutations in the group,
where the degree of a permutation is the number of the elements that are not fixed by the

permutation.

From Corollary 6 it follows that the permutation (R, P, R,,...,P), where Py is the identity
permutation on {0,1}4 and where the cycle representation of Py contains a 3-cycle and 13
fixed points, is an element of G. This permutation lets exactly 13>23™ elements of {0,1}'?®

fixed. Hence, its degree is equal to 3>2'%* and the minimal degree of G is not greater

than3x224
Now, let us suppose that G is smaller than the alternating group. Then, (because of Lemma 7
G isdoubly transitive) according to Theorem 15.1 in [7] we obtain the inequality:
s 2128 08
I3 —— - ——
3 3

Thus, we obtained a contradiction. From this together with the result of Lemma?2 it follows

that G equals the Alternating group over the set {0,1}'%.
|

5 Conclusonsand Remarks

By the result stated in the Theorem several thinkable regularities in the SERPENT algorithm
can be excluded (the Alternating group is a large, simple, primitive and (2'%-2)-transitive
permutation group).

With respect to the Markov approach to differential cryptanalysis we obtain [4]:

For all corresponding Markov ciphers the chain of differencesisirreducible and aperiodic, i.e.
after sufficiently many rounds al differences will be amost equally probable. If the
hypothesis of stochastic equivalence holds for a part of the corresponding Markov ciphers,
then for al of these Markov ciphers SERPENT is secure against differential cryptanalysis
attacks after a sufficient number of rounds.

The results give evidence that the S-boxes and the transformation L are well chosen from the
algebraic point of view.

It would be interesting to find out the group generated by the 32 round cipher mappings, but
this seemsto be very difficult, since the key scheduling must be taken into consideration.

The author would like to thank Mr. R. Gretmann for the careful preparation of the programs
for the mentioned computations.
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